精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求曲线在点处的切线方程和函数的极值:

(2)若对任意,都有成立,求实数的最小值.

【答案】1)切线方程为,函数时,取得极小值21

【解析】试题分析:(1)根据导数几何意义得曲线处的切线斜率等于,再根据,利用点斜式可得切线方程为,求函数极值,首先求导函数零点:,列表分析导函数符号变化规律,确定函数极值(2)不等式恒成立问题一般转化为对应函数最值问题:,再根据函数定义域讨论函数最值取法:

试题解析:(1)因为,所以

因为,所以曲线处的切线方程为..........3

解得,则的变化情况如下:



2




0



递减

极小值

递增

所以函数时,取得极小值....................6

2)由题设知:当时,,当时,

,令,则

由于,显然不符合题设要求...9

由于

显然,当,对,不等式恒成立,

综上可知,的最小值为1.........................................12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆: , 左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且∠AOB= , 求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当为常数,且在区间变化时,求的最小值

(2)证明:对任意的,总存在,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1、F2是椭圆C1+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是
(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为4-
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,且AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1.

(Ⅰ)证明:AC平分∠BAD;

(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的离心率e= ,直线l过A(a,0),B(0,﹣b)两点,原点O到直线l的距离是
(1)求双曲线的方程;
(2)过点B作直线m交双曲线于M、N两点,若 =﹣23,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

同步练习册答案