精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(2x+1).
(1)求证:函数f(x) 在(-7,+∞) 内单调递增;
(2)若关于x 的方程f(x)=x+m 在[1,2]上有解,求m 的取值范围.
分析:(1)用单调性定义证明,先任取两个变量,且界定大小,再作差变形,通过分析,与零比较,要注意变形要到位.
(2)先分离出参数m:m=log2(2x+1)-x=log2(2x+1)-log22x=log2(1+
1
2x
)
下面只须考查1+
1
2x
 的取值范围结合对数函数的性质即可得出m 的取值范围.
解答:解:(1)证明:任取-7<x1<x2<+∞,
f(x1)-f(x2)=log2(2x1+1)-log2(2x2+1)=log2
2x1+1
2x2+1
,…(4分)
∵x1<x2,∴0<2x1+1<2x2+1 
0<
2x1+1
2x2+1
<1
log2
2x1+1
2x2+1
<0
 
∴f(x1)<f(x2),…(7分)
所以,函数f(x) 在(-7,+∞) 内单调递增.…(8分)
(2)m=log2(2x+1)-x=log2(2x+1)-log22x=log2(1+
1
2x
)
,…(11分)
当1≤x≤2 时,
1
4
1
2x
1
2
5
4
≤1+
1
2x
3
2
 …(13分)
log2(
5
4
)≤log2(1+
1
2x
)≤log2(
3
2
)
,即log2(
5
4
)≤m≤log2(
3
2
)
 …(15分)
所以,m 的取值范围是(log2
5
4
 , log2
3
2
)
 …(16分)
点评:本题主要考查函数与方程的综合运用,主要涉及了用单调性的定义证明函数的单调性以及构造函数研究函数的性质等问题,还考查了转化思想和构造转化函数的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案