精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
16
+
y2
12
=1,点P为其上一点,F1、F2为椭圆的焦点,Q为射线F1P延长线上一点,且|PQ|=|PF2|,设R为F2Q的中点.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+4
2
)与曲线C相交于A、B两点,若∠AOB=90°时,求k的值.
(1)F1(-2,0),F2(2,0)设R(x,y),Q(x1,y1).∵|PQ|=|PF2|,
∴|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=8,则(x1+2)2+y12=64.(4分)
x=
x1-2
2
y=
y1
2
得x1=2x-2,y1=2y.
∴(2x)2+(2y)2=64,故R的轨迹方程为:x2+y2=16(7分)
(2)如图,当∠AOB=90°时,
在Rt△AOC中,∠AOC=45°,此时弦心距|OC|=2
2

又|OC|=
|4
2
k|
1+k2
.由
|4
2
k|
1+k2
=2
2
k=±
3
3
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若点(3,1)是抛物线y2=2px(p>0)的一条弦的中点,且这条弦所在直线的斜率为2,则p=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右顶点分别为A、B,椭圆C的右焦点为F,
过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN必过x轴上的一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点D(1,0),且与直线l:x=-1相切.
(1)求动圆圆心M的轨迹C;
(2)过定点D(1,0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点,Q是双曲线上动点,从左焦点引∠F1QF2的平分线的垂线,垂足为P,则P点的轨迹是(  )的一部分.
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(x,y)满足椭圆方程2x2+y2=1,则
y
x-1
的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C?x2-y2=1及直线l:y=kx-1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为
2
,求实数k的值.

查看答案和解析>>

同步练习册答案