【题目】已知定义在实数集R的函数f(x)满足f(1)=4,且f(x)导函数f′(x)<3,则不等式f(lnx)>3lnx+1的解集为( )
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)
【答案】D
【解析】解:设t=lnx,
则不等式f(lnx)>3lnx+1等价为f(t)>3t+1,
设g(x)=f(x)﹣3x﹣1,
则g′(x)=f′(x)﹣3,
∵f(x)的导函数f′(x)<3,
∴g′(x)=f′(x)﹣3<0,此时函数单调递减,
∵f(1)=4,
∴g(1)=f(1)﹣3﹣1=0,
则当x>1时,g(x)<g(1)=0,
即g(x)<0,则此时g(x)=f(x)﹣3x﹣1<0,
即不等式f(x)>3x+1的解为x<1,
即f(t)>3t+1的解为t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集为(0,e),
故选:D.
【考点精析】解答此题的关键在于理解基本求导法则的相关知识,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2 , 则f(7)=( )
A.18
B.2
C.1
D.﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中正确的序号是(写上所有正确命题的序号).
①函数f(x)=ln(x﹣1)+2的图象恒过定点(1,2).
②若函数f(x)的定义域为[﹣1,1],则函数f(2x﹣1)的定义域为[﹣3,1].
③已知集合P={a,b},Q={﹣1,0,1},则映射f:P→Q中满足f(b)=0的映射共有3个.
④若函数f(x)=log2(x2﹣2ax+1)的定义域为R,则实数a的取值范围是(﹣1,1).
⑤函数f(x)=ex的图象关于直线y=x对称的函数解析式为y=lgx.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.
(1)求f(0)的值和判断函数f(x)的奇偶性;
(2)求证:函数f(x)是在R上的减函数;
(3)求函数f(x)在区间[﹣2,4]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p,q是简单命题,则“p∨q是真命题”是“¬p是假命题”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分有不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x﹣8>0且q是p的必要不充分条件,则实数a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com