精英家教网 > 高中数学 > 题目详情
19.已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a.设函数F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,则对于F(x)有如下说法:
①定义域为[-b,b]
②是奇函数   
③最小值为0
④在定义域内单调递增
其中正确说法的序号是①②.(写出所有正确的序号)

分析 对于①,根据F(x)的解析式以及f(x)的定义域,可得a≤x≤b,a≤-x≤b,又由0<b<-a,可得F(x)定义域,可得①正确;
对于②,先求出F(-x),可得F(-x)=-F(x),再结合F(x)的其定义域,可得F(x)为奇函数,②正确;对于③,举出反例,当f(x)>1时,可得F(x)的最小值不是0,故③错误;
对于④,由于F(x)是奇函数,结合奇函数的性质,可得④错误;综合可得答案.

解答 解:根据题意,依次分析4个命题:
对于①,对于F(x)=f2(x)-f2(-x),有a≤x≤b,a≤-x≤b,
而又由0<b<-a,则F(x)=f2(x)-f2(-x)中,x的取值范围是-b≤x≤b,即其定义域是[-b,b],则①正确;
对于②,F(-x)=f2(-x)-f2(x)=-F(x),且其定义域为[-b,b],关于原点对称,
则F(x)为奇函数,②正确;
对于③,由y=f(x)无零点,假设f(x)=2x,F(x)=22x-2-2x=22x-$\frac{1}{{2}^{2x}}$无最小值,故③错误;
对于④,由于F(x)是奇函数,则F(x)在[-b,0]上与[0,b]上的单调性相同,故F(x)在其定义域内不一定单调递增,④错误;
故答案为①②.

点评 本题考查函数的性质,涉及函数的定义域、奇偶性、单调性、最值等性质,判断②时,注意要结合函数F(x)的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x+a)2ex+b(a,b∈R)在x=1处取得极小值-1
(Ⅰ)求a,b的值
(Ⅱ)证明:x>0时,f(x)>lnx-$\frac{3}{2}$x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y,函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从一副没有大小王的52张扑克牌中随机抽取1张,事件A为“抽得红桃8”,事件B为“抽得为黑桃”,则事件“A或B”发生的概率值是$\frac{7}{26}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x<0”是“x2+x<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出以下三个说法:
①非线性回归问题,不能用线性回归分析解决;
②在刻画回归模型的拟合效果时,相关指数R2的值越接近1,说明拟合的效果越好;
③对分类变量X与Y,若它们的随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越大;
  ④统计中用相关系数r来衡量两个变量之间线性关系的强弱,则|r|的值越小,相关性越弱.
其中正确的说法的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.线性回归方程表示的直线=a+bx,必定过(  )
A.(0,0)点B.( $\overline{x}$,$\overline{y}$) 点C.(0,$\overline{y}$)点D.( $\overline{x}$,0)点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{1}{2}{x^2}+2mlnx-(2+m)x,m∈R$.
(I)当m>0时,讨论f(x)的单调性;
(II)若对任意的a,b∈(0,+∞)且a>b有f(a)-f(b)>m(b-a)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为$\frac{8}{n}$,则同学们认为最适宜的教室应在(  )
A.2楼B.3楼C.4楼D.8楼

查看答案和解析>>

同步练习册答案