分析 对于①,根据F(x)的解析式以及f(x)的定义域,可得a≤x≤b,a≤-x≤b,又由0<b<-a,可得F(x)定义域,可得①正确;
对于②,先求出F(-x),可得F(-x)=-F(x),再结合F(x)的其定义域,可得F(x)为奇函数,②正确;对于③,举出反例,当f(x)>1时,可得F(x)的最小值不是0,故③错误;
对于④,由于F(x)是奇函数,结合奇函数的性质,可得④错误;综合可得答案.
解答 解:根据题意,依次分析4个命题:
对于①,对于F(x)=f2(x)-f2(-x),有a≤x≤b,a≤-x≤b,
而又由0<b<-a,则F(x)=f2(x)-f2(-x)中,x的取值范围是-b≤x≤b,即其定义域是[-b,b],则①正确;
对于②,F(-x)=f2(-x)-f2(x)=-F(x),且其定义域为[-b,b],关于原点对称,
则F(x)为奇函数,②正确;
对于③,由y=f(x)无零点,假设f(x)=2x,F(x)=22x-2-2x=22x-$\frac{1}{{2}^{2x}}$无最小值,故③错误;
对于④,由于F(x)是奇函数,则F(x)在[-b,0]上与[0,b]上的单调性相同,故F(x)在其定义域内不一定单调递增,④错误;
故答案为①②.
点评 本题考查函数的性质,涉及函数的定义域、奇偶性、单调性、最值等性质,判断②时,注意要结合函数F(x)的定义域.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,0)点 | B. | ( $\overline{x}$,$\overline{y}$) 点 | C. | (0,$\overline{y}$)点 | D. | ( $\overline{x}$,0)点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2楼 | B. | 3楼 | C. | 4楼 | D. | 8楼 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com