精英家教网 > 高中数学 > 题目详情

设变量x,y满足约束条件,则目标函数的最大值为(   )

A.10B.12C.13D.14

C

解析考点:简单线性规划的应用.
专题:计算题;数形结合.
分析:先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=2x+4y过区域内某个顶点时,z最大值即可.
解答:解析:先画出约束条件
的可行域,如图,
得到当x=,y=时目标函数z=2x+4y有最大值为,Zmax=2×+4×=13.
故选C.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,则目标函数u=x2+y2的最大值M与最小值N的比
M
N
=(  )
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+y≥2
x≤1
y≤2
,则目标函数z=-x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河西区一模)设变量x、y满足约束条件
y≥0
x-y+1≥0
x+y-3≤0
,则z=2x+y的最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设变量x,y满足约束条件
2x-y≤0
x-3y+5≥0
x≥0
,则目标函数z=x-y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)设变量x,y满足约束条件
x+1≥0
x-y+1≤0
x+y-2≤0
,则z=4x+y的最大值为(  )

查看答案和解析>>

同步练习册答案