【题目】我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为( )
A.4
B.﹣5
C.14
D.﹣23
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,(e=2.71828)
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)①设g(x)=x+ ,x∈(0,+∞),求g(x)的最小值; ②证明: ≥1﹣x.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若 是函数 图象的一条对称轴,当ω取最小正数时( )
A.f(x)在 单调递减
B.f(x)在 单调递增
C.f(x)在 单调递减
D.f(x)在 单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分. 现设n=4,分别以a1 , a2 , a3 , a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,
则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设a1 , a2 , a3 , a4等可能地为1,2,3,4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,
①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,1), =(2cosx,3),x∈R.
(1)当 =λ 时,求实数λ和tanx的值;
(2)设函数f(x)= ,求f(x)的最小正周期和单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com