精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为,且对任意,,且当.

1)证明:是奇函数;

2)证明:上是减函数;

3)求在区间上的最大值和最小值.

【答案】(1)证明见解析;(2)证明见解析;(3) 最大值是6,最小值是-6.

【解析】

1)令xy0,则可得f0)=0y=﹣x,即可证明fx)是奇函数,

2)设x1x2,由已知可得fx1x2)<0,再利用fx+y)=fx+fy),及减函数的定义即可证明.

3)由(2)的结论可知f(﹣3)、f3)分别是函数yfx)在[33]上的最大值与最小值,故求出f(﹣3)与f3)就可得所求值域.

1)因为的定义域为,,

,所以;

,,所以,

从而有,所以,所以是奇函数.

2)任取,,

,

因为,所以,所以,所以,

所以,从而上是减函数.

3)由于上是减函数,

在区间上的最大值是,最小值是,

由于,所以

,

由于为奇函数知, ,

从而在区间上的最大值是6,最小值是6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义域在上的奇函数,且

1)用定义证明:函数上是增函数,

2)若实数满足,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形轴上且 ).

Ⅰ)求点轨迹的方程;

Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:

年份

2014年

2015年

2016年

2017年

2018年

补贴额亿元

9

10

12

11

8

粮食产量万亿吨

23

25

30

26

21

(1)请根据如表所给的数据,求出关于的线性回归直线方程

(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图(1)所示的四边形中,.将沿折起,使二面角为直二面角(如图(2)),的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在点处的切线方程;

(2)求函数的单调区间;

(3) 求证:当时,恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足,若的最大值为,则实数________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中中,直线,圆的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若直线与圆交于两点,且的面积是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.据此可估计该生产线上大约有25%的零件内径小于等于___________,大约有30%的零件内径大于___________mm(单位:mm.

查看答案和解析>>

同步练习册答案