精英家教网 > 高中数学 > 题目详情

【题目】(12)如图所示,函数的一段图象过点

1)求函数的表达式;

2)将函数的图象向右平移个单位,得函数的图象,求函数的最大值,并求此时自变量的取值集合.

【答案】1;(2.

【解析】

(1)由图知,T=π,从而知ω=2,由2×()+φ=0,可求得φ,f1(0)=1可求得A,从而可求函数f1x)的表达式;

(2)利用函数yAsin(ωx)的图象变换,可求得yf2x)=f1x)=2sin(2x),从而可求yf2x)的最大值及取最大值时的自变量的值.

(1)由图知,T)=π,

∴ω2;

又2×()+φ=0,

∴φ

f1x)=Asin(2x),

f1(0)=1,即Asin1,

A2,

f1x)=2sin(2x);

(2)∵yf2x)=f1x)=2sin[2(x]=2sin(2x),

∴当2x2kπk∈Z),即{x|xkπk∈Z)}时,yf2x)取得最大值2.

又-2x,解得-x+k∈Z),

所以的增区间为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax﹣1|
(1)若f(x)≤2的解集为[﹣3,1],求实数a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=
(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;
(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0 , m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1 , x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,则异面直线AB1BC1所成角为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|.
(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;
(2)若f(x)≤1的解集为[0,2], =a(m>0,n>0),求证:m+4n≥2 +3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在的直线方程为 边上的高所在直线的方程为

)求的顶点的坐标.

若圆经过不同的三点,且斜率为的直线与圆相切于点,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数f(x)-g(x)必有零点;

(2)设函数G(x)=f(x)-g(x)-1

①若函数G(x)有两相异零点且上是减函数,求实数m的取值范围。

②是否存在整数a,b使得的解集恰好为若存在,求出a,b的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDE中四边形ABED是直角梯形,∠BAD=90°,DE∥AB,△ACD是的正三角形,CD=AB=DE=1,BC=

(1)求证:△CDE是直角三角形

(2) F是CE的中点,证明:BF⊥平面CDE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为1的正方形,底面,点是棱的中点.

(1)求证:平面

(2)求与平面所成角.

查看答案和解析>>

同步练习册答案