已知抛物线C:的焦点为,(,)是C上一点,=,则=( )
A.1 | B.2 | C.4 | D.8 |
科目:高中数学 来源: 题型:解答题
(14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x
-4)2+(y-5)2=4.
(1)若点M∈⊙ C1, 点N∈⊙C2,求|MN|的取值范围;
(2)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程;
(3)设P为平面上的点,满足:存在过点P的无数多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是( )
A.直线 | B.圆 | C.抛物线 | D.双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2= 20的两条渐近线围成的三角形的面积等于,则抛物线的方程为
A.y2=4x | B.y2=8x | C.x2=4y | D.x2=8y |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知椭圆C:的离心率为.双曲线的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是( )
A.(0,2) | B.(2,0) | C.(4,0) | D.(0,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com