精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,F1,F2分别为椭圆的左右焦点,A,B分别为椭圆的左右顶点,点P为椭圆上异于A,B的动点.
(1)求证:直线PA、PB的斜率之积为定值;
(2)设D(1,0),求|PD|的最小值.

分析 (1)求得椭圆的a,可得A,B的坐标,设P(m,n),运用椭圆方程和斜率公式,化简整理,即可得到定值;
(2)设出P的坐标,运用椭圆方程和两点的距离公式,结合二次函数的最值求法,即可得到最小值.

解答 解:(1)证明:椭圆C:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$的a=2$\sqrt{2}$,
可得A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),设P(m,n),
即有$\frac{{m}^{2}}{8}$+$\frac{{n}^{2}}{4}$=1,n2=4(1-$\frac{{m}^{2}}{8}$),
kPA•kPB=$\frac{n}{m+2\sqrt{2}}$•$\frac{n}{m-2\sqrt{2}}$=$\frac{{n}^{2}}{{m}^{2}-8}$
=$\frac{8-{m}^{2}}{2}$•$\frac{1}{{m}^{2}-8}$=-$\frac{1}{2}$,
即有直线PA、PB的斜率之积为定值-$\frac{1}{2}$;
(2)设P(m,n),即有$\frac{{m}^{2}}{8}$+$\frac{{n}^{2}}{4}$=1,n2=4(1-$\frac{{m}^{2}}{8}$),
则|PD|=$\sqrt{(m-1)^{2}+{n}^{2}}$=$\sqrt{{m}^{2}-2m+1+4-\frac{1}{2}{m}^{2}}$
=$\sqrt{\frac{1}{2}{m}^{2}-2m+5}$=$\sqrt{\frac{1}{2}(m-2)^{2}+3}$,(-2$\sqrt{2}$<m<2$\sqrt{2}$),
当m=2时,|PD|取得最小值,且为$\sqrt{3}$.

点评 本题考查椭圆的方程和性质,考查直线的斜率公式的运用,以及两点的距离公式,同时考查二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=tan2x-2tanx,x$∈[0,\frac{π}{2})$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{8,(x=1)}\\{f(x-1)+3,(x≥2,x∈{N}^{*})}\end{array}\right.$,求f(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{1}{2}$),离心率是$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程:
(2)若直线l与椭圆C交于A,B两点,线段AB的中点为($\frac{1}{2}$,$\frac{1}{2}$),求直线l与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若实数x,y满足x2+y2≤4,求以下代数式的最值.
(1)$\frac{y-2}{x+3}$,(2)|3x-2y+1|;(3)x2+2x+y2-y+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的方程为x2+y2=4;
(1)设过点P(1,1)的直线1被圆C截得的弦长等于2$\sqrt{3}$,求直线1的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=4x5+3x3+2x+1,则f(log23)+f(lo${g}_{\frac{1}{2}}3$)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是幂函数,且图象不经过原点.
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于(  )
A.{(0,1)}B.(0,1)C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案