精英家教网 > 高中数学 > 题目详情

先阅读下列不等式的证法,再解决后面的问题:
已知a1a2∈R,a1a2=1,求证:.
证明:构造函数f(x)=(xa1)2+(xa2)2f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8()≤0,∴.
(1)已知a1a2,…,an∈R,a1a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

(1)见解析(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若不等式+…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:
(1)函数f(x)在区间(0,1)是增函数;
(2)an<an+1<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用反证法证明:如果x>,那么x2+2x-1≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用数学归纳法证明:++…+= (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等差数列,N+),
 N+),问Pn与Qn哪一个大?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

请观察以下三个式子:
;
;

归纳出一般的结论,并用数学归纳法证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(      )   

A. B. C. D.

查看答案和解析>>

同步练习册答案