精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

【答案】(1);(2)

【解析】

Ⅰ)由经过伸缩变换,可得曲线的方程,由极坐标方程可得直线的直角坐标方程.

Ⅱ)因为椭圆的参数方程为 为参数),所以可设点

由点到直线的距离公式,点到直线的距离为由三角函数性质可求点到直线的距离的最大值.

Ⅰ)由经过伸缩变换,可得曲线的方程为,即,由极坐标方程可得直线的直角坐标方程为

Ⅱ)因为椭圆的参数方程为 为参数),所以可设点

由点到直线的距离公式,点到直线的距离为(其中),由三角函数性质知,当时,点到直线的距离有最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,x R其中a>0.

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;

(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记 ,求函数g(t)在区间[-4,-1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线轴所成的锐角为,直线轴所成的锐角为,判断的大小关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左右焦点分别为 ,左右顶点分别为 为椭圆上的动点(不与 重合),且直线的斜率的乘积为

(1)求椭圆的方程;

(2)过作两条互相垂直的直线(均不与轴重合)分别与椭圆交于 四点,线段的中点分别为,求证:直线过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表

组号

分组

回答正确

的人数

回答正确的人数

占本组的频率

第1组

[15,25)

0.5

第2组

[25,35)

18

第3组

[35,45)

0.9

第4组

[45,55)

9

0.36

第5组

[55,65]

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?

(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各题中,的什么条件?

1为自然数,为整数;

2

3

4:四边形的一组对边相等,:四边形为平行四边形;

5:四边形的对角线互相垂直,:四边形为菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数其中

1)讨论函数的单调性;

2)若函数有两个零点,

(i)的取值范围;

(ii)的两个零点分别为x1,x2,证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

(2)若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数是自然对数的底数).

Ⅰ)若,证明:曲线没有经过点的切线;

Ⅱ)若函数在其定义域上不单调,求的取值范围;

Ⅲ)是否存在正整数,当时,函数的图象在轴的上方,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案