精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
3
a=2csinA.
(1)确定∠C的大小;
(2)若c=
3
,求△ABC周长的取值范围.
分析:(1)把已知的等式变形为:
a
c
=
2sinA
3
,并利用正弦定理化简,根据sinA不为0,可得出sinC的值,由三角形为锐角三角形,得出C为锐角,利用特殊角的三角函数值即可求出C的度数;
(2)由c及sinC的值,利用正弦定理列出关系式,得到a=2sinA,b=2sinB,表示出三角形的周长,将表示出a,b及c的值代入,由C的度数,求出A+B的度数,用A表示出B,把B也代入表示出的周长,利用两角和与差的正弦函数公式及特殊角的三角函数值整理后,提取2
3
再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据A为锐角,得到A的范围,进而确定出这个角的范围,根据正弦函数的图象与性质求出此时正弦函数的值域,即可确定出周长的范围.
解答:解:(1)由
3
a=2csinA变形得:
a
c
=
2sinA
3

又正弦定理得:
a
c
=
sinA
sinC

2sinA
3
=
sinA
sinC

∵sinA≠0,∴sinC=
3
2

∵△ABC是锐角三角形,
∴∠C=
π
3

(2)∵c=
3
,sinC=
3
2

∴由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,
即a=2sinA,b=2sinB,又A+B=π-C=
3
,即B=
3
-A,
∴a+b+c=2(sinA+sinB)+
3

=2[sinA+sin(
3
-A)]+
3

=2(sinA+sin
3
cosA-cos
3
sinA)+
3

=3sinA+
3
cosA+
3

=2
3
(sinAcos
π
6
+cosAsin
π
6
)+
3

=2
3
sin(A+
π
6
)+
3

∵△ABC是锐角三角形,
π
6
<∠A<
π
2

3
2
<sin(A+
π
6
)≤1,
则△ABC周长的取值范围是(3+
3
,3
3
].
点评:此题考查了正弦定理,正弦函数的定义域与值域,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)在锐角△ABC中,a、b、c分别是三内角A、B、C所对的边,若a=3,b=4,且△ABC的面积为3
3
,则角C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在锐角△ABC中,A>B,则有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=
21
,b=4,且BC边上高h=2
3

①求角C;
②a边之长.

查看答案和解析>>

同步练习册答案