精英家教网 > 高中数学 > 题目详情

如图4,四边形为正方形,平面于点,交于点.

(1)证明:平面
(2)求二面角的余弦值.

(1)详见解析;(2).

解析试题分析:(1)由平面,得到,再由四边形为正方形得到,从而证明平面,从而得到,再结合,即以及直线与平面垂直的判定定理证明平面;(2)先证明三条直线两两垂直,然后以点为坐标原点, 所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值.
试题解析:(1)平面
,又
平面
,又
平面,即平面
(2)设,则中,,又
,由(1)知

,又
,同理
如图所示,以为原点,建立空间直角坐标系,则


是平面的法向量,则,又
所以,令,得
由(1)知平面的一个法向量
设二面角的平面角为,可知为锐角,
,即所求.
【考点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分)如图在三棱锥中,分别为棱的中点,已知

求证(1)直线平面
(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且=2.求证:直线EG,FH,AC相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

矩形与矩形所在的平面互相垂直,将沿翻折,翻折后的点E恰与BC上的点P重合.设,则当       时,有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

查看答案和解析>>

同步练习册答案