如图,在直三棱柱中,,点分别为和的中点.
(1)证明:平面;
(2)平面MNC与平面MAC夹角的余弦值.
(1)证明过程详见解析;(2).
解析试题分析:本题主要以直三棱柱为几何背景,考查空间两条直线的位置关系、二面角、直线与平面的位置关系等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.第一问,根据线面平行的判定定理,先在面内找到线,从而证明平面;第二问,建立空间直角坐标系,写出所有点坐标,先找到平面和平面的法向量,利用线面垂直的判定可以确定是平面的法向量,而平面的法向量需要计算求出来,最后利用夹角公式求夹角余弦,注意判断夹角是锐角还是钝角,来判断余弦值的正负.
试题解析:(1)连接
由题意知,点分别为和的中点,∴,
又平面,平面,
∴平面.
(2)以点为坐标原点,分别以直线为轴,轴,轴,建立空间直角坐标系,如图所示,
于是,
∵平面,∴,∵为正方形,∴平面,
∴是平面的一个法向量,,设平面的法向量为,,,
,,令,
∴,
设向量和向量的夹角为,则
,
∴平面与平面的夹角的余弦值是.
考点:1.线面垂直的判定定理;2.线面平行的判定定理;3.空间向量法;4.夹角公式.
科目:高中数学 来源: 题型:解答题
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF//平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com