【题目】“五行”是中国古代哲学的一种系统观,广泛用于中医、堪舆、命理、相术和占卜等方面.古人把宇宙万物划分为五种性质的事物,也即分成木、火、土、金、水五大类,并称它们为“五行”.中国古代哲学家用五行理论来说明世界万物的形成及其相互关系,创造了五行相生相克理论.相生,是指两类五行属性不同的事物之间存在相互帮助,相互促进的关系,具体是:木生火,火生土,土生金,金生水,水生木.相克,是指两类五行属性不同的事物之间是相互克制的关系,具体是:木克土,土克水,水克火、火克金、金克木.现从分别标有木,火,土,金,水的根竹签中随机抽取根,则所抽取的根竹签上的五行属性相克的概率为___________.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.
(1)求椭圆的方程;
(2)设点在椭圆上,点在直线上,且,求证:为定值;
(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若X是一个集合,是一个以X的某些子集为元素的集合,且满足:①X属于,属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于.则称是集合X上的一个拓扑.已知集合,对于下面给出的四个集合:
①;
②;
③;
④.
其中是集合X上的拓扑的集合的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和满足:,,,且对一切,均有.
(1)求证:数列为等差数列,并求数列的通项公式;
(2)若,求数列的前n项和;
(3)设(),记数列的前n项和为,问:是否存在正整数,对一切,均有恒成立.若存在,求出所有正整数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点;
(1)若,求曲线的方程;
(2)对于(1)中的曲线,若过点作直线平行于曲线的渐近线,交曲线于点A、B,求三角形的面积;
(3)如图,若直线(不一定过)平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,如果对于定义域内的任意实数,对于给定的非零常数,总存在非零常数,恒有成立,则称函数是上的级类增周期函数,周期为,若恒有成立,则称函数是上的级类周期函数,周期为.
(1)已知函数是上的周期为1的2级类增周期函数,求实数的取值范围;
(2)已知,是上的级类周期函数,且是上的单调增函数,当时,,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,且,
(1)求的值,并求出及数列的通项公式;
(2)设求数列的前n项和
(3)设在数列中取出(为常数)项,按照原来的顺序排成一列,构成等比数列.若对任意的数列,均有试求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com