精英家教网 > 高中数学 > 题目详情

【题目】五行是中国古代哲学的一种系统观,广泛用于中医、堪舆、命理、相术和占卜等方面.古人把宇宙万物划分为五种性质的事物,也即分成木、火、土、金、水五大类,并称它们为五行”.中国古代哲学家用五行理论来说明世界万物的形成及其相互关系,创造了五行相生相克理论.相生,是指两类五行属性不同的事物之间存在相互帮助,相互促进的关系,具体是:木生火,火生土,土生金,金生水,水生木.相克,是指两类五行属性不同的事物之间是相互克制的关系,具体是:木克土,土克水,水克火、火克金、金克木.现从分别标有木,火,土,金,水的根竹签中随机抽取根,则所抽取的根竹签上的五行属性相克的概率为___________.

【答案】

【解析】

计算从5种不同属性的物质中随机抽取2中,抽到相生的概率,再根据对立事件即可求解.

标有木,火,土,金,水的根竹签中随机抽取根,共有,

而相生的有5,

则抽到的两种物质相克的概率,

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的导函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,证明

(Ⅲ)设为函数在区间内的零点,其中,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.

(1)求椭圆的方程;

(2)设点在椭圆上,点在直线上,且,求证:为定值;

(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】X是一个集合,是一个以X的某些子集为元素的集合,且满足:①X属于属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于.则称是集合X上的一个拓扑.已知集合,对于下面给出的四个集合

.

其中是集合X上的拓扑的集合的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且对一切,均有.

1)求证:数列为等差数列,并求数列的通项公式;

2)若,求数列的前n项和

3)设),记数列的前n项和为,问:是否存在正整数,对一切,均有恒成立.若存在,求出所有正整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点;

1)若,求曲线的方程;

2)对于(1)中的曲线,若过点作直线平行于曲线的渐近线,交曲线于点AB,求三角形的面积;

3)如图,若直线(不一定过)平行于曲线的渐近线,交曲线于点AB,求证:弦AB的中点M必在曲线的另一条渐近线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,如果对于定义域内的任意实数,对于给定的非零常数,总存在非零常数,恒有成立,则称函数上的级类增周期函数,周期为,若恒有成立,则称函数上的级类周期函数,周期为

1)已知函数上的周期为12级类增周期函数,求实数的取值范围;

2)已知上的级类周期函数,且上的单调增函数,当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,且,

(1)求的值,并求出及数列的通项公式;

(2)设求数列的前n项和

(3)设在数列中取出(为常数)项,按照原来的顺序排成一列,构成等比数列.若对任意的数列,均有试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,是棱上的一点,平面.

(1)若的中点,证明:平面平面

(2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案