精英家教网 > 高中数学 > 题目详情

【题目】某班有男生27名,女生18名,用分层抽样的方法从该班中抽取5名学生去敬老院参加献爱心活动.

1)求从该班男生、女生中分别抽取的人数;

2)为协助敬老院做好卫生清扫工作,从参加活动的5名学生中随机抽取2名,求这2名学生均为女生的概率.

【答案】1)从该班男生、女生中抽取的人数分别为322

【解析】

1)根据分层抽样的基本原则可计算求得结果;

2)列举出随机抽取名学生的所有基本事件,从中找到名学生均为女生的基本事件个数,根据古典概型概率公式可求得结果.

1)设从该班男生、女生中抽取的人数分别为,则

从该班男生、女生中抽取的人数分别为

2)记参加活动的名男生分别为名女生分别为

则随机抽取名学生的所有基本事件为:

,共

记“名学生均为女生”为事件,则事件包含的基本事件只有个:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是偶函数,求的值;

2)设函数,当时,有且只有一个实数根,求的取值范围;

3)若关于的方程在区间上有两个不相等的实数根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:

月收入(百元)

频数

20

40

60

40

20

20

认同超前消费的人数

8

16

28

21

13

16

(1)根据以上统计数据填写下面列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;

月收入不低于8000元

月收入低于8000元

总计

认同

不认同

总计

(2)若从月收入在的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.

参考公式:(其中).

附表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=,其中a为常数.

1)当a1时,求fx)的最大值;

2)若fx)在区间(0e]上的最大值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,的中点,的交点,以为折痕把折起,使点到达点的位置,且,如图2.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x6n1nN*}B{x|x2nnN*},将AB的所有元素从小到大依次排列构成一个数列{an}.记Sn为数列{an}的前n项和,若Sm3014,则正整数m值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数xy满足等式

(Ⅰ)试将y表示为x的函数,并求出定义域和值域;

(Ⅱ)是否存在实数m,使得函数有零点?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱柱中,底面边长为,侧棱长为.

1)求证:平面平面

2)求直线与平面所成的角的正弦值;

3)设为截面-点(不包括边界),求到面,面,面的距离平方和的最小值.

查看答案和解析>>

同步练习册答案