精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),直线l与曲线C:(y12x21交于AB两点.

1)求|AB|的长;

2)在以O为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为,求点P到线段AB中点M的距离.

【答案】12.(21

【解析】

1)将直线l的参数方程的标准形式,代入曲线C的方程得.设点AB对应的参数分别为μ1μ2,可得μ12μ1μ2的值,可得|AB|的长;

2)将点P的极坐标化为直角坐标,可得中点M对应参数,由参数μ的几何意义,可得点P到线段AB中点M的距离|PM|.

解:(1)∵直线l的参数方程为t为参数),

∴直线l的参数方程的标准形式为μ为参数),

代入曲线C的方程得μ2+2μ40

设点AB对应的参数分别为μ1μ2

μ12=﹣2μ1μ2=﹣4

|AB|1μ2|2

2)∵点P的极坐标为

∴由极坐标与直角坐标互化公式得点P的直角坐标为(﹣11),

∴点P在直线l上,中点M对应参数为1

由参数μ的几何意义,点P到线段AB中点M的距离|PM|1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线与圆的相交弦长为4.

1)求抛物线的标准方程;

2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,求的最值;

2)若,证明:对任意的,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知是以点为圆心的圆上的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使得,其中点,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1)若的极值点,求实数的值;

2)若上是单调增函数,求实数的取值范围;

3)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A0,﹣3),点M满足|MA|2|MO|.

1)求点M的轨迹方程;

2)若圆C:(xc2+yc+121,判断圆C上是否存在符合题意的M

3)设Px1y1),Qx2y2)是点M轨迹上的两个动点,点P关于点(01)的对称点为P1,点P关于直线y1的对称点为P2,如果直线QP1QP2y轴分别交于(0a)和(0b),问(a1b1)是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC的对边分别为abc,若acos2ccos2b.

(1)求证:abc成等差数列;

(2)B60°b4,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照分为5组,其频率分布直方图如图所示.

(1)求图中的值;

(2)估计这种植物果实重量的平均数和方差(同一组中的数据用该组区间的中点值作代表);

(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为,求的分布列和数学期望

查看答案和解析>>

同步练习册答案