精英家教网 > 高中数学 > 题目详情

【题目】10.已知{an}是正数组成的数列,a1=1,且点( ,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足b1=1,bn+1=bn+ ,求证:bn·bn+2< .

【答案】
(1)由已知得an+1=an+1,

则an+1-an=1,又a1=1,

所以数列{an}是以1为首项,1为公差的等差数列.

故an=1+(n-1)×1=n.


(2)由(1)知,an=n,从而bn+1-bn=2n.

bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1

=2n-1+2n-2+…+2+1

= =2n-1.

因为bn·bn+2-

=(2n-1)(2n+2-1)-(2n+1-1)2

=(22n+2-2n+2-2n+1)-(22n+2-2·2n+1+1)

=-2n<0,

所以bn·bn+2< .


【解析】分析:要证bn·bn+2< ,就是比较bn·bn+2 的大小,比较两个数的大小一般用作差法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的i的值为8,则判断框内实数a的取值范围是 . (写成区间或集合的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心在原点,焦点在轴上, 分别为上、下焦点,椭圆的离心率为 为椭圆上一点且

(1)若的面积为,求椭圆的标准方程;

(2)若的延长线与椭圆另一交点为,以为直径的圆过点 为椭圆上动点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)当m=1时,解关于x的不等式xf(x)≤0;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a1=2,a4=16
(1)求数列{an}的通项公式;
(2)令 ,n∈N* , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该农产品.以 (单位: )表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将表示为的函数;

(2)根据直方图估计利润不少于57000元的概率;

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是

查看答案和解析>>

同步练习册答案