精英家教网 > 高中数学 > 题目详情
精英家教网如图,△ABC中,AB=9,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=
 
分析:根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.
解答:精英家教网解:当△AEF∽△ABC时,则
AE
AF
=
AB
AC
3
AF
=
9
6
,AF=2;
当△AEF∽△ACB时,则
AE
AF
=
AC
AB
3
AF
=
6
9
,AF=4.5.
故答案为:2或4.5.
点评:本题考查相似三角形的性质应用.利用相似三角形的性质时,要注意相似比的顺序.分类讨论时,要注意对应关系的变化,防止遗漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在△ABC中,AB⊥AC,
BD
=
5
3
BC
|
AC
|
=2,则
AC
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江大庆实验中学高二上学期开学考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高二(上)期初数学试卷(理科)(解析版) 题型:解答题

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步练习册答案