精英家教网 > 高中数学 > 题目详情

【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);

求用户用水费用(元)关于月用水量(吨)的函数关系式;

Ⅲ)如图2是该县居民李某20171~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某20171~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

【答案】(Ⅰ)平均数为7.96,中位数为8.15;(Ⅱ);(Ⅲ)13吨.

【解析】试题分析:

本题考查频率分布直方图的应用及线性回归方程的应用(Ⅰ)根据用频率分布直方图估计平均数、中位数的方法计算即可。(Ⅱ)结合题意可用分段函数表示出的关系。(Ⅲ)先由样本中点过回归直线的结论求得1~6月份月用水费约为 7月份的水费为元,再根据回归方程求得7月份的用水吨数。

试题解析

(Ⅰ)由频率分布直方图可得该市居民每月的用水量的平均数为

设中位数为

解得

(Ⅱ)设居民月用水量为吨,相应的水费为元,则由题意得

(Ⅲ)设李某2017年1~6月份月用水费(元)与月份的对应点为,它们的平均值分别为

又点在直线上,

所以

因此

所以7月份的水费为元.

由(2)知,当时,

所以李某7月份的用水吨数约为13吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2x2(a>0),g(x)=bln x.

(1)若函数yf(x)图象上的点到直线xy-3=0距离的最小值为2 ,求a的值;

(2)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数km,使得f(x)≥kxmg(x)≤kxm都成立,则称直线ykxm为函数f(x)与g(x)的“分界线”.设ab=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形, ,又,直线与直线所成的角为

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以A表示值域为R的函数组成的集合,B表示具有如下性质的函数组成的集合:对于函数,存在一个正数M,使得函数的值域包含于区间[-M,M]。例如,当 时, ,现有如下命题:

①设函数的定义域为D,则“”的充要条件是“

②若函数,则有最大值和最小值;

③若函数 的定义域相同,且 ,则

④若函数,则有最大值且

其中的真命题有_____________。(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求函数的单调区间;

(Ⅱ)设,其中为函数的导函数.判断在定义域内是否为单调函数,并说明理由.

查看答案和解析>>

同步练习册答案