精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow{m}$=(a+c,b)与向量$\overrightarrow{n}$=(a-c,b-a)互相垂直.
(1)求角C;
(2)求sinA+sinB的取值范围.

分析 (1)由$\overrightarrow{m}$⊥$\overrightarrow{n}$,得(a+c)(a-c)+b(b-a)=0化简整理得a2+b2-c2=ab代入余弦定理即可求得cosC,结合C的范围进而求得C.
(2)由第二问得到的A与B的关系式,用A表示出B,代入所求的式子中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据A的范围,求出此时正弦函数的值域,可得出所求式子的范围.

解答 解:$(1)由已知可得:_{\;}^{\;}({a+c})({a-c})+b({b-a})=0⇒{a^2}+{b^2}-{c^2}=ab$,
∴$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{1}{2}$,
∵0<C<π,
∴$C=\frac{π}{3}$.
$(2)_{\;}^{\;}∵C=\frac{π}{3}$,
∴$A+B=\frac{2π}{3}$,
∴$sinA+sinB=sinA+sin({\frac{2π}{3}-A})=sinA+sin\frac{2π}{3}cosA-cos\frac{2π}{3}sinA$=$\frac{3}{2}sinA+\frac{{\sqrt{3}}}{2}cosA=\sqrt{3}({\frac{{\sqrt{3}}}{2}sinA+\frac{1}{2}cosA})=\sqrt{3}sin({A+\frac{π}{6}})$,
∵$0<A<\frac{2π}{3}$,
∴$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}⇒\frac{1}{2}<sin({A+\frac{π}{6}})≤1$,
∴$\frac{\sqrt{3}}{2}$<sinA+sinB=$\sqrt{3}$sin(A+$\frac{π}{6}$)≤$\sqrt{3}$.
则sinA+sinB的取值范围是($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

点评 此题考查了余弦定理,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=$\sqrt{2}$.
(1)求证:平面PAD⊥平面PCD;
(2)试在棱PB上确定一点E,使截面AEC把该几何体分成的两部分PDCEA与EACB的体积比为2:1;
(3)在(2)的条件下,求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中的真命题是(  )
A.三角形的内角是第一象限角或第二象限角
B.第一象限的角是锐角
C.第二象限的角比第一象限的角大
D.角α是第四象限角的充要条件是2kπ-$\frac{π}{2}$<α<2kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设曲线y=-logax在点x=e处的切线与直线x-4y+1=0垂直,则实数a=(  )
A.$\sqrt{e}$B.$\frac{1}{2}$C.$\root{4e}{e}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若△ABC外接圆的面积为25π,则$\frac{AB+BC}{sin(A+B)+sin(B+C)}$=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M,N分别是最大、最小值点,且$\overrightarrow{OM}•\overrightarrow{ON}$=0,则A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,若S17=170,则a9的值为(  )
A.10B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:选择题

如图,空间四边形中,,点上,且,点中点,则等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(0,2)可以作三条直线与函数y=f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+1相切,则实数a的取值范围为(  )
A.$(-∞,2\root{3}{3})$B.$(2\root{3}{3},+∞)$C.$(-2\root{3}{3},2\root{3}{3})$D.$(0,2\root{3}{3})$

查看答案和解析>>

同步练习册答案