精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形是边长为1的正方形,点顺次在边上,且.过点分别作射线,且,这里为定角,且,由此得到四边形

(1)问四边形是怎样的四边形?证明你的结论.

(2)设,试将表示成的函数.

(3)是否存在,使为与无关的定值?若存在,求出相应的的值;若不存在,说明理由.

【答案】(1) 正方形(2) ,其中,.(3)

【解析】

(1)四边形为正方形.

如图,联结

因为,所以.则

于是,.进而,

又由题设可知

,则

同理,

故,

从而,

(2)设,则

同理,计算可得

相减得,其中,

另解:将折线EQF分别投影到AB上,得

消去即得

(3)

欲使是与无关的常数,必须且只须,即

因此,当时,是与无关的常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC= .管理部门欲在该地从M到D修建小路:在 上选一点P(异于M,N两点),过点P修建与BC平行的小路PQ.

(1)若∠PBC= ,求PQ的长度;
(2)当点P选择在何处时,才能使得修建的小路 与PQ及QD的总长最小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在其定义域内存在,使得成立,则称函数为“可分拆函数”.

(1)试判断函数是否为“可分拆函数”?并说明你的理由;

(2)设函数为“可分拆函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:后,得到如图的频率分布直方图.

(I)调查公司在抽样时用到的是哪种抽样方法?

(II)求这40辆小型汽车车速的众数和中位数的估计值;

(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P与两个定点O(0,0),A(-3,0)距离之比为.

(1)求点P的轨迹C方程;

(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, +b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案