精英家教网 > 高中数学 > 题目详情
设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是(  )
分析:先根据椭圆定义可知|PF1|+|PF2|=2a,再利用余弦定理化简整理得cos∠PF1F2=
4a2-4c2
2|PF1||PF2|
-1,进而根据均值不等式确定|PF1||PF2|的范围,进而确定cos∠PF1F2的最小值,求得a和b的关系,进而求得a和c的关系,确定椭圆离心率的取值范围.
解答:解:F1(-c,0),F2(c,0),c>0,设P(x1,y1),
则|PF1|=a+ex1,|PF2|=a-ex1
在△PF1F2中,由余弦定理得cos120°=
1
2
=
(a+ex1)2+(a-ex1)2-4c2
2(a+ex1)(a-ex1)

解得x12=
4c2-3a2
e2

∵x12∈(0,a2],∴0≤
4c2-3a2
e2
<a2,即4c2-3a2≥0.且e2<1
∴e=
c
a
3
2

故椭圆离心率的取范围是 e∈[
3
2
,1)

故选A.
点评:本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1、F2为椭圆的左右焦点,过椭圆
x2
25
+
y2
16
=1
的中心任作一直线与椭圆交于PQ两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
a2
+
y2
b2
=1
 (a>b>0)的离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程;
(2)设F1、F2为椭圆的左、右焦点,过F2作直线交椭圆于P、Q两点,求△PQF1的内切圆半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆的两个焦点,|F1F2|=8,P为椭圆上的一点,|PF1|+|PF2|=10,PF1⊥PF2,则点P的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•蓟县一模)设F1、F2为椭圆的两个焦点,A为椭圆上的点,且
AF2
F1F2
=0
cos∠AF1F2=
2
2
3
,则椭圆的离心率为(  )

查看答案和解析>>

同步练习册答案