精英家教网 > 高中数学 > 题目详情
(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
(1)见解析   (2)见解析
(1)由AB是圆的直径,得AC⊥BC;
由PA垂直于圆O所在的平面,得PA⊥平面ABC;又BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC,又BC?平面PBC,所以平面PAC⊥平面PBC.
(2)连接OG并延长交AC于M,

连接QM,QO.由G为△AOC的重心,知M为AC的中点,
由Q为PA的中点,则QM∥PC,
又O为AB中点,得OM∥BC.
因为QM∩MO=M,QM?平面QMO,
MO?平面QMO,BC∩PC=C,BC?平面PBC,PC?平面PBC,
所以平面QMO∥平面PBC.
因为QG?平面QMO,所以QG∥平面PBC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点,的中点.
(1)求证:平面平面
(2)求证:平面
(3)设为正方体棱上一点,给出满足条件的点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下说法中,正确的个数是( )
①平面内有一条直线和平面平行,那么这两个平面平行
②平面内有两条直线和平面平行,那么这两个平面平行
③平面内有无数条直线和平面平行,那么这两个平面平行
④平面内任意一条直线和平面都无公共点,那么这两个平面平行
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·郑州模拟]设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的条件有(  )
A.①或②B.②或③
C.①或③D.①或②或③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC边上存在点Q,使得PQ⊥QD,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两直线垂直,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不重合的平面,下面给出的条件中一定能推出的是(     )
A.B.
C.D.

查看答案和解析>>

同步练习册答案