精英家教网 > 高中数学 > 题目详情
(2013•虹口区二模)已知抛物线C:y2=2px(p>0),直线l交此抛物线于不同的两个点A(x1,y1)、B(x2,y2))
(1)当直线l过点M(-p,0)时,证明y1•y2为定值;
(2)当y1y2=-p时,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;
(3)记N(p,0),如果直线l过点M(-p,0),设线段AB的中点为P,线段PN的中点为Q.问是否存在一条直线和一个定点,使得点Q到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.
分析:(1)易判断直线l有斜率且不为0,设l:y=k(x+p),代入抛物线方程消掉x得y的二次方程,由韦达定理即可证明;
(2)分情况讨论:①当直线l的斜率存在时,设l:y=kx+b(k≠0),代入抛物线方程消掉x得y的二次方程,由韦达定理及y1y2=-p得b,k的关系式,假设直线l过定点(x0,y0),则y0=kx0+b,用k消掉b即可得到定点坐标;
②当直线l的斜率不存在,设l:x=x0,代入抛物线方程易求y1y2,由已知可求得x0,可判断此时直线也过该定点;
(3)易判断直线l存在斜率且不为0,由(1)及中点坐标公式可得yP,代入直线l方程得xP,设Q(x,y),由中点坐标公式可得点Q轨迹的参数方程,消掉参数k后即得其普通方程,由方程及抛物线定义可得准线、焦点即为所求;
解答:(1)证明:l过点M(-p,0)与抛物线有两个交点,可知其斜率一定存在,
设l:y=k(x+p),其中k≠0(若k=0时不合题意),
y=k(x+p)
y2=2px
得k•y2-2py+2p2k=0,
y1y2=2p2
(2)①当直线l的斜率存在时,设l:y=kx+b,其中k≠0(若k=0时不合题意).
y=kx+b
y2=2px
得ky2-2py+2pb=0.
y1y2=
2pb
k
=-p
,从而b=-
k
2

假设直线l过定点(x0,y0),则y0=kx0+b,
从而y0=kx0-
k
2
,得(x0-
1
2
)k-y0=0
,即
x0=
1
2
y0=0
,即过定点(
1
2
,0).
②当直线l的斜率不存在,设l:x=x0,代入y2=2px得y2=2px0y=±
2px0

y1y2=
2px0
•(-
2px0
)=-2px0=-p

解得x0=
1
2
,即l:x=
1
2
,也过(
1
2
,0).
综上所述,当y1y2=-p时,直线l过定点(
1
2
,0).
(3)依题意直线l的斜率存在且不为零,
由(1)得点P的纵坐标为yP=
1
2
(y1+y2)=
p
k
,代入l:y=k(x+p)得xP=
p
k2
-p
,即P(
p
k2
-p,
p
k
).
设Q(x,y),则
x=
1
2
(
p
k2
-p+p)
y=
1
2
p
k
,消k得y2=
p
2
x

由抛物线的定义知存在直线x=-
p
8
,点(
p
8
,0)
,点Q到它们的距离相等.
点评:本题考查直线方程、抛物线方程及其位置关系,考查分类讨论思想,考查学生探究问题解决问题的能力,综合性较强,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知函数y=2sin(x+
π
2
)cos(x-
π
2
)
与直线y=
1
2
相交,若在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则|
M1M13
|
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)在正方体ABCD-A1B1C1D1中与异面直线AB,CC1均垂直的棱有(  )条.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数zn=an+bn•i,其中an∈R,bn∈R,n∈N*,i是虚数单位,且zn+1=2zn+
.
zn
+2i
,z1=1+i.
(1)求数列{an},{bn}的通项公式;
(2)求和:①z1+z2+…+zn;②a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)函数f(x)=(2k-1)x+1在R上单调递减,则k的取值范围是
-∞,
1
2
-∞,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数z=
(1-i)31+i
,则|z|=
2
2

查看答案和解析>>

同步练习册答案