精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足对任意的n∈N*,都有2an+1-an=0,又a2=8,则S8=$\frac{255}{8}$.

分析 由题意和等比数列的定义判断出{an}是等比数列,并求出公比,由a2=8求出a1,由等比数列的前n项和公式求出S8的值.

解答 解:由2an+1-an=0得,an=2an+1
所以数列{an}是以$\frac{1}{2}$为公比的等比数列,
又a2=8,则a1=16,
所以S8=$\frac{16(1-\frac{1}{{2}^{8}})}{1-\frac{1}{2}}$=$\frac{255}{8}$,
故答案为:$\frac{255}{8}$.

点评 本题考查了等比数列的定义,以及等比数列的前n项和公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=kax-a-x(a>0且a≠1,k∈R)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)<0,判断f(x)的单调性(无需证明),并求出使得不等式  f(x2-tx)+f(4-x)>0对任意x∈[1,2]上恒成立的t的取值范围;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x,且g(x)≥2mf(x)在x∈[1,2]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在复平面内,复数$\frac{i}{{\sqrt{3}-3i}}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,命题$p:\frac{x^2}{2a}+\frac{y^2}{3a-6}=1$表示的曲线是焦点在x轴上的椭圆;命题q:不等式x2+(a+4)x+16>0的解集为R,若p∧q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=emx+x2-mx.
(1)讨论f(x)的单调性;
(2)若对于任意x1,x2∈[-1,1],都有f(x1)-f(x2)≤e-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}|{{{log}_2}x}|,0<x≤2\\ \frac{1}{3}{x^2}-\frac{8}{3}x+5,x>2\end{array}$,若a,b,c,d互不相同,且f(a)=f(b)=f(c)=f(d),则a+b+c+d的取值范围为$({10,\frac{21}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合M={x|x2-3x+2>0},集合$N=\left\{{x|{{({\frac{1}{2}})}^x}≥4}\right\}$,则M∩N=(  )
A.{x|x>-2}B.{x|x<-2}C.{x|x>-1}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a+\overrightarrow b=(1,3)$,$\overrightarrow a-\overrightarrow b=(3,7)$,则$\overrightarrow a•\overrightarrow b$=(  )
A.-12B.-20C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)△ABC的三个顶点分别为A(-1,5),B(-2,-2),C(5,-5),求其外接圆的方程.
(Ⅱ)求经过点(-5,2),焦点为($\sqrt{6}$,0)的双曲线方程.

查看答案和解析>>

同步练习册答案