精英家教网 > 高中数学 > 题目详情

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

(1) an=2·2n-1=2n(n∈N*)    (2) Sn=2n+1+n2-2

解析解:(1)设q为等比数列{an}的公比,
则由a1=2,a3=a2+4,
得2q2=2q+4,即q2-q-2=0,
解得q=2或q=-1(舍去),因此q=2.
所以{an}的通项公式为an=2·2n-1=2n(n∈N*).
(2)∵{bn}是等差数列,b1=1,d=2,
∴Sn=a1+a2+…+an+b1+b2+…+bn
=+n×1+×2
=2n+1+n2-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为等差数列的前项和,.
⑴求
⑵求
⑶求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2(an+),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.
(1)求证:数列{Sn+n+2}成等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(1)求数列的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示的最小值.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求证:数列是等差数列并求数列{an}的通项公式;
(2)设bn=anan+1,求证:b1+b2+…+bn< .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,数列满足:
(1)求数列的通项公式
(2)求数列的通项公式
(3)若,求数列的前项和.

查看答案和解析>>

同步练习册答案