精英家教网 > 高中数学 > 题目详情
给出下面四个命题:
①?x,y∈R,sin(x-y)=sinx-siny
②?x0∈R,x02-2x0+2≥0
③?x∈R+,log2x+logx2≥2
④?a∈R,函数y=logax在(0,+∞)上为减函数
其中真命题的序号为
 
分析:①根据确三角函数的和角公式即可进行判定
②根据存在性命题的定义进行判断即可;
③根据全称性命题的定义进行判断即可,判断命题的真假;
④解根据存在性命题的定义结合对数函数y=logax的性质进行判断即可,从而得出其命题的真假;
解答:解:①根据确三角函数的和角公式:sin(x-y)=sinxcosy-cosxsiny,故①错误;
②取x0=0,x02-2x0+2≥0;故②正确;
③根据当x=
1
2
,log2x+logx2<0,故③错误;
④根据a∈(0,1),函数y=logax在(0,+∞)上为减函数,从而得出其命题是真的;
故答案为:②④.
点评:此题考查的知识面比较广,主要考查四种逻辑关系,解题的关键是将各个命题的内容具体化使之成为简单的命题,然后再求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、给出下面四个命题:①“直线a、b为异面直线”的充分非必要条件是:直线a、b不相交;②“直线l垂直于平面α内所有直线”的充要条件是:l⊥平面α;③“直线a⊥b”的充分非必要条件是“a垂直于b在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a至少平行于平面β内的一条直线”.其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

5、已知两条直线m,n,两个平面α,β,给出下面四个命题:
①m∥n,m⊥α?n⊥α②α∥β,m?α,n?β?m∥n
③m∥n,m∥α?n∥α④α∥β,m∥n,m⊥α?n⊥β
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面四个命题:①
AB
+
BA
=
0
;②
AB
+
BC
=
AC
;③
AB
-
AC
=
BC
;④0•
AB
=0
.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a表示平面,a,b表示直线,给出下面四个命题,其中正确的是
(1)(2)
(1)(2)
.(填写所有正确命题的序号)
(1)a∥b,a⊥α⇒b⊥α           
(2)a⊥α,b⊥α⇒a∥b
(3)a⊥α,a⊥b⇒b∥α           
(4)a∥α,a⊥b⇒b⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于曲线C:
x2
4-k
+
y2
k-1
=1,给出下面四个命题:
①由线C不可能表示椭圆;
②若曲线C表示双曲线,则k<1或k>4;
③当1<k<4时,曲线C表示椭圆
④若曲线C表示焦点在x轴上的椭圆,则1<k<
5
2

其中正确命题的个数为
 
个.

查看答案和解析>>

同步练习册答案