精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是

A. B. C. D.

【答案】C

【解析】根据题意知道函数是偶函数,且满足,故函数还是周期为4的函数,根据表达式画出图像是定义在R上的周期性的图像,一部分是开口向下的二次函数,一部分是一次函数,当k>0时,根据题意知两图像有两个交点,当直线和图像,,相切时是一种临界,要想至少有4个交点,斜率要变小;故设切点为

k<0时,临界是过点(-61)时,此时,要想至少有4个交点需要逆时针继续旋转,斜率边大,直到和x轴平行。故两种情况并到一起得到:实数k的取值范围是

故答案为:C。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为的正方形与梯形所在的平面互相垂直,其中, 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形与梯形所在平面互相垂直,,点中点 .

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时取到极值,求的值及的图象在处的切线方程;

(2)若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2x2(a>0),g(x)=bln x.

(1)若函数yf(x)图象上的点到直线xy-3=0距离的最小值为2 ,求a的值;

(2)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数km,使得f(x)≥kxmg(x)≤kxm都成立,则称直线ykxm为函数f(x)与g(x)的“分界线”.设ab=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

同步练习册答案