精英家教网 > 高中数学 > 题目详情
若一动点M与定直线l:x=
16
5
及定点A(5,0)的距离比是4:5.
(1)求动点M的轨迹C的方程;
(2)设所求轨迹C上有点P与两定点A和B(-5,0)的连线互相垂直,求|PA|•|PB|的值.
(1)设动点M(x,y),
根据题意得
|x-
16
5
|
(x-5)2+y2
=
4
5

化简得9x2-16y2=144,
x2
16
-
y2
9
=1.
(2)由(1)知轨迹C为双曲线,A、B即为C的两个焦点,
∴|PA|-|PB|=±8.①
又PA⊥PB,∴|PA|2+|PB|2=|AB|2=100.②
由②-①2得|PA|•|PB|=18.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的动点.
(1)求AB所在直线的一般式方程;
(2)当D在线段AB上运动时,求线段CD的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一直角坐标系中,经过伸缩变换
x′=5x
y′=3y
后,曲线C变为曲线x′2+y′2=1,则曲线C的方程为(  )
A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线
x2
2
-y2=1
的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点M与点F(3,0)的距离比它到直线x+1=0的距离多2,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=mx+1与曲线C:ax2+y2=2(m、a∈R)交于A、B两点,O为坐标原点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)已知点M(0,-1),当a=-2,m变化时,动点P满足
MP
=
OA
+
OB
,求动点P的纵坐标的变化范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:(x-4)2+(y-m)2=16(m∈N*),直线4x-3y-16=0过椭圆E:=1(a>b>0)的右焦点,且被圆C所截得的弦长为,点A(3,1)在椭圆E上.
(1)求m的值及椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求·的取值范围.

查看答案和解析>>

同步练习册答案