精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求的极坐标方程和直线的直角坐标方程;

(2)射线与圆的交点为,与直线的交点为,求的取值范围.

【答案】(1)圆的极坐标方程为.直线的直角坐标方程为.(2)

【解析】

(1)首先化为直角坐标方程,然后转化为极坐标方程可得C的极坐标方程,展开三角函数式可得l的普通方程;

(2)利用极坐标方程的几何意义,将原问题转化为三角函数求值域的问题,据此整理计算可得的取值范围.

1)圆的普通方程是

代入上式:,化简得:

所以圆的极坐标方程为.

直线的极坐标方程为

代人上式,得:

∴直线的直角坐标方程为.

2)设,因为点在圆上,则有

,因为点在直线,则有

所以

,∴,∴

,即

的范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数存在极大值与极小值,且在处取得极小值.

(1)求实数的值;

(2)若函数有两个零点,求实数的取值范围.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,右焦点是抛物线的焦点.

(1)求椭圆的方程;

(2)已知动直线过右焦点,且与椭圆分别交于两点.试问轴上是否存在定点,使得恒成立?若存在求出点的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x4y+30

1)若直线lx+y0与圆C交于AB两点,求弦AB的长;

2)从圆C外一点Px1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM||PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆N与圆M关于直线对称.

1)求圆N的方程.

2)是否存在过点P的无穷多对互相垂直的直线,使得被圆M截得的弦长与被圆N截得的弦长相等?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)求的单调区间;

(Ⅲ)设,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点与双曲线的焦点重合,并且经过点.

(Ⅰ)求椭圆C的标准方程;

(II) 设椭圆C短轴的上顶点为P,直线不经过P点且与相交于两点,若直线PA与直线PB的斜率的和为,判断直线是否过定点,若是,求出这个定点,否则说明理由.

查看答案和解析>>

同步练习册答案