精英家教网 > 高中数学 > 题目详情

【题目】设实数满足,若目标函数的最大值为6,则的最小值为( )

A. B. C. D. 0

【答案】A

【解析】

作出不等式对应的平面区域,由,得 ,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大为,即,经过点时,直线的截距最小,此时最小.

,即 直线,由,解得,即,此时的最小值为,故选A.

【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生的视力情况,现采用随机抽样的方法从该校的两班中各抽取名学生进行视力检测,检测的数据如下:

名学生的视力检测结果:

名学生的视力检测结果:

(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算班的名学生视力的方差;

(Ⅱ)现从班的上述名学生中随机选取名,求这名学生中至少有名学生的视力低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)求证: 平面

(3)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)若直线与平面所成的角为30°,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科)已知函数.

(1)若,求曲线在点处的切线方程;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )

(参考数据:

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数y=f(x)的图象(
A.关于点( ,0)对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出20个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,如图所示的程序框图的功能是计算这20个数的和.

(1)请在程序框图中填写两个_______内缺少的内容;

(2)请补充完整该程序框图对应的计算机程序(用WHILE语句编写).

查看答案和解析>>

同步练习册答案