【题目】给定椭圆:,称圆心在原点,半径为的圆是椭圆的“伴椭圆”,若椭圆的一个焦点为,其短轴上一个端点到的距离为.
(1)求椭圆的方程;
(2)过点作椭圆的“伴随圆”的动弦,过点、分别作“伴随圆”的切线,设两切线交于点,证明:点的轨迹是直线,并写出该直线的方程;
(3)设点是椭圆的“伴随圆”上的一个动点,过点作椭圆的切线、,试判断直线、是否垂直?并说明理由.
【答案】(1);
(2)见解析;
(3)见解析.
【解析】
(1)由题意可得,,则,从而得到椭圆C的方程;
(2)根据题意,求得,分直线的斜率存在与不存在两种情况,将斜率存在时求得的直线,对斜率不存在时求得的点P的坐标进行检验,最后求得结果.
(3)讨论当P在直线上时,设出直线方程,联立椭圆方程,消去,得到关于的方程,运用判别式为0,化简整理,得到关于的方程,求出连根之积,判断是否为,即可判断垂直.
(1)依题意得:,所以,
所以椭圆方程为:;
(2)由题意可得伴随圆的方程为,
点为,所以,
当过点P的直线斜率不存在时,则,
可求得,此时,
当过点P的直线斜率存在时,设直线方程为:,
设,,
则经过各自的切线方程为:,
把代入,解得,
消,得到,
当不存在时,也满足方程,
所以点的轨迹是一条直线,且方程为;
(3)当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个公共点,则其方程为:,此时经过点或,
则直线的方程为:,经检验,满足垂直关系;
当斜率都存在时,设点,
因为点P在伴随圆上,所以有,
设经过点,且与椭圆只有一个公共点的直线方程为:,
联立椭圆方程,
,消化简得,
因为相切,所以,即:,
又因为,
所以,所以,
所以直线,
从而得证.
科目:高中数学 来源: 题型:
【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=2,前3项和为S3=.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,为其焦点,椭圆,,为其左右焦点,离心率,过作轴的平行线交椭圆于两点,.
(1)求椭圆的标准方程;
(2)过抛物线上一点作切线交椭圆于两点,设与轴的交点为,的中点为,的中垂线交轴为,,的面积分别记为,,若,且点在第一象限.求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地的中小学办学条件在政府的教育督导下,迅速得到改变.教育督导一年后.分别随机抽查了初中(用表示)与小学(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为( )(80分及以上为优秀). ①初中得分与小学得分的优秀率相同;②初中得分与小学得分的中位数相同③初中得分的方差比小学得分的方差大④初中得分与小学得分的平均分相同.
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com