精英家教网 > 高中数学 > 题目详情

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆的“伴椭圆”,若椭圆的一个焦点为,其短轴上一个端点到的距离为.

(1)求椭圆的方程;

(2)过点作椭圆的“伴随圆”的动弦,过点分别作“伴随圆”的切线,设两切线交于点,证明:点的轨迹是直线,并写出该直线的方程;

(3)设点是椭圆的“伴随圆”上的一个动点,过点作椭圆的切线,试判断直线是否垂直?并说明理由.

【答案】1

2)见解析;

3)见解析.

【解析】

1)由题意可得,,则,从而得到椭圆C的方程;

2)根据题意,求得,分直线的斜率存在与不存在两种情况,将斜率存在时求得的直线,对斜率不存在时求得的点P的坐标进行检验,最后求得结果.

3)讨论当P在直线上时,设出直线方程,联立椭圆方程,消去,得到关于的方程,运用判别式为0,化简整理,得到关于的方程,求出连根之积,判断是否为,即可判断垂直.

(1)依题意得:,所以

所以椭圆方程为:

2)由题意可得伴随圆的方程为

,所以

当过点P的直线斜率不存在时,则

可求得,此时

当过点P的直线斜率存在时,设直线方程为:

则经过各自的切线方程为:

代入,解得

,得到

不存在时,也满足方程

所以点的轨迹是一条直线,且方程为

3)当中有一条无斜率时,不妨设无斜率,

因为与椭圆只有一个公共点,则其方程为:,此时经过点

则直线的方程为:,经检验,满足垂直关系;

斜率都存在时,设点

因为点P在伴随圆上,所以有

设经过点,且与椭圆只有一个公共点的直线方程为:

联立椭圆方程,

,消化简得

因为相切,所以,即:

又因为

所以,所以

所以直线

从而得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆切于点,与圆交于点,圆在点处的切线交于点为坐标原点,则的面积的最大值为( )

A.B.2C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线为其焦点,椭圆为其左右焦点,离心率,过轴的平行线交椭圆于两点,.

(1)求椭圆的标准方程;

(2)过抛物线上一点作切线交椭圆于两点,设轴的交点为的中点为的中垂线交轴为的面积分别记为,若,且点在第一象限.求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地的中小学办学条件在政府的教育督导下,迅速得到改变.教育督导一年后.分别随机抽查了初中(用表示)与小学(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为( )(80分及以上为优秀). ①初中得分与小学得分的优秀率相同;②初中得分与小学得分的中位数相同③初中得分的方差比小学得分的方差大④初中得分与小学得分的平均分相同.

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )

A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著

B.从2014年到2018年这5年,高铁运营里程与年价正相关

C.2018年高铁运营里程比2014年高铁运营里程增长80%以上

D.从2014年到2018年这5年,高铁运营里程数依次成等差数列

查看答案和解析>>

同步练习册答案