精英家教网 > 高中数学 > 题目详情
将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子中如果每个盒子中最多放一个球,那么不同的放球方法有
24
24
种;如果4号盒子中至少放两个球,那么不同的放球方法有
10
10
种.
分析:如果每个盒子中最多放一个球,那么不同的放球方法有
A
3
4
种.如果4号盒子中至少放两个球,那么不同的放球方法有
C
2
3
×3+1种,由此可得答案.
解答:解:将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子中,
如果每个盒子中最多放一个球,那么不同的放球方法有
A
3
4
=24种.
如果4号盒子中至少放两个球,那么不同的放球方法有
C
2
3
×3+1=10种,
故答案为 24,10.
点评:本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某人随机地将编号为1,2,3的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则编号为2的小球放入到编号为奇数的盒子中的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将编号为1、2、3的三个小球放入编号为甲、乙、丙的三个盒子中,每盒放入一个小球,已知1号小球放入甲盒,2号小球放入乙盒,3号小球放入丙盒的概率分别为
3
5
1
2
,p
,记1号小球放入甲盒为事件A,2号小球放入乙盒为事件B,3号小球放入丙盒为事件C,事件A、B、C相互独立.
(Ⅰ)若p=
1
2
,求事件A、B、C中至少有两件发生的概率;
(Ⅱ)若事件A、B、C中恰有两件发生的概率不低于
2
5
,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏二模)必做题
随机的将编号为1,2,3的三个小球放入编号为1,2,3的三个盒子中,每个盒子放入一个小球,当球的编号与盒子的编号相同时叫做“放对球”,否则叫做“放错球”,设放对球的个数为?.
(1)求?的分布列;
(2)求?的期望值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第一次统考理科数学 题型:解答题

.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一

个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义

吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一

轮“放球”满足=2时的概率。⑵的数学期望。

 

查看答案和解析>>

同步练习册答案