精英家教网 > 高中数学 > 题目详情
12.若定义在区间(-1,0)上的函数f(x)=log3a(x+1)满足f(x)<0,则a的取值范围是($\frac{1}{3}$,+∞).

分析 由x的范围求出x+1的范围是(0,1),由此可得3a>1时f(x)=log3a(x+1)<0,则a的取值范围可求.

解答 解:∵x∈(-1,0),∴x+1∈(0,1),
由f(x)=log3a(x+1)<0,可得
3a>1,即$a>\frac{1}{3}$.
∴满足f(x)<0的a的取值范围是($\frac{1}{3}$,+∞).
故答案为:($\frac{1}{3}$,+∞).

点评 本题考查对数不等式的解法,考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.平面内给定三个向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1),若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),则实数k等于$-\frac{16}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“事件A,B互斥”是“事件A,B对立”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设平面直角坐标系xOy中,曲线G:$y=\frac{x^2}{2}+\frac{a}{2}x-{a^2}({x∈R})$.
(1)若a≠0,曲线G的图象与两坐标轴有三个交点,求经过这三个交点的圆C的一般方程;
(2)在(1)的条件下,求圆心C所在曲线的轨迹方程;
(3)若a=0,动圆圆心M在曲线G上运动,且动圆M过A(0,1),设EF是动圆M在x轴上截得的弦,当圆心M运动时弦长|EF|是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x|x-a|+2x.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在g(x)=2x+1图象的下方;
(3)若存在a∈[0,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=0.80.7,b=0.80.9,c=50.7则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,如果a=2,c=2$\sqrt{3}$,∠A=30°,那么△ABC的面积等于2$\sqrt{3}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列$\frac{1}{2}$,$\frac{3}{4}$,$\frac{5}{8}$,$\frac{7}{16}$,…的通项公式为(  )
A.an=$\frac{2n-1}{2n}$B.an=$\frac{2n+1}{2n}$C.an=$\frac{2n-1}{{2}^{n}}$D.an=$\frac{2n+1}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=f(x)的定义域为[-3,2],则函数y=f(3-2x)的定义域是[$\frac{1}{2}$,3].

查看答案和解析>>

同步练习册答案