精英家教网 > 高中数学 > 题目详情
已知如图四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE,
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.
解:如图,以B为原点,分别以BC、BA、BP为x,y、z轴,
建立空间直角坐标系,

又DE=2PE,

(1)

∴异面直线PA与CD所成的角为60°。
(2)



又PD∩PC=P,
∴BE⊥平面PCD。
(3)设平面PAD的一个法向量为
则由,得
令z=1,则
,设平面PBD的法向量为
则由,得
,则


又二面角A-PD-B为锐二面角,
故二面角A-PD-B的大小为60°。
练习册系列答案
相关习题

科目:高中数学 来源:河南省安阳市2009届高三年级二模模拟试卷、数学试题(理科) 题型:044

已知如图四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上.

(1)求异面直线PA与CD所成的角的大小;

(2)在棱PD上是否存在一点E,使BE⊥平面PCD?;

(3)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(I)求异面直线PA与CD所成的角的大小;

(II)求证:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(I)求异面直线PA与CD所成的角的大小;

(II)求证:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中数学 来源:浙江省菱湖中学2010-2011学年高三10月月考数学理 题型:解答题

 

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求异面直线PA与CD所成的角的大小;

    (2)求证:BE⊥平面PCD;

    (3)求二面角A—PD—B的大小.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案