精英家教网 > 高中数学 > 题目详情
8.2011年9月1日起,我国实行新个人所得税率,起征点为3500元,超过部分实行超额累进税率.如果月工资20000元,则应交税为3120元.
应纳锐收入(元)税率(%)
不超过1500元3
超过1500元至4500元10
超过4500元至9000元20
超过9000元至35000元25

分析 由表格和题意求出月工资20000元应交的税即可.

解答 解:由表格得,月工资20000元,
则应交税为1500×3%+3000×10%+4500×20%+7500×25%
=45+300+900+1875=3120(元),
故答案为:3120.

点评 本题考查分段函数的实际应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求下列函数的反函数:
(1)y=1+log2(x-1)
(2)y=x2-1(-1≤x≤0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$0<β<\frac{π}{2}<α<π$,且$cos({α-\frac{β}{2}})=\frac{5}{13}$,$sin({\frac{α}{2}-β})=\frac{3}{5}$.
求(1)$tan({α-\frac{β}{2}})$的值;
(2)$cos({\frac{α+β}{2}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式$\frac{4}{x+3}>1$的解集为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x∈R且x≠1,比较两式1+x与$\frac{1}{1-x}$的值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知焦点在y轴的椭圆C上、下焦点分别是F1,F2,且长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,直线y=mx+1与椭圆将于A、B两点.
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,求m的值;
(3)已知真命题:“如果点P(x0,y0)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,那么过点P的椭圆的切线方程为$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.”利用上述结论,解答下面问题:
若点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使l与椭圆C有且只有一个公共点,设直线的PF1,PF2斜率分别为k1,k2.若k≠0,试证明k(k1+k2)为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.国际上通常用恩格尔系数衡量一个国家和地区人民生活水平的状况,它的计算公式为$n=\frac{x}{y}$(x代表人均食品支出总额,y代表人均个人消费支出总额)且y=2x+475,各种类型的家庭标准如表:
家庭类型贫困温饱小康富裕
nn≥59%50%≤n≤59%40%≤n≤50%30%≤n≤40%
张先生居住区2007年比2002年食品支出下降7.5%,张先生家在2007年购买食品和2002年完全相同的情况下人均少支出75元.则张先生家2007年属于(  )
A.贫困B.温饱C.小康D.富裕

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax-lnx,a∈R
(1)若f(x)在x=1处有极值,求f(x)的单调递增区间;
(2)是否存在正实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=x3+x-16在点(2,-6)处的切线方程13x-y-32=0.

查看答案和解析>>

同步练习册答案