A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{2\sqrt{6}}{5}$ |
分析 以D为原点,DA,DC,DD 1 所在直线分别为x轴、y轴、z轴建立空间直角坐标系,由题意知:当E(6,3,0),F(3,6,0)时,A 1,E,F、C 1 共面,由此利用向量法能求出平面A1DE与平面C1DF所成锐二面角的余弦值.
解答 解:以D为原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴建立空间直角坐标系,
由题意知:当E(6,3,0),F(3,6,0)时,A1,E,F、C1 共面,
设平面A1 DE的法向量为$\overrightarrow{n}$=(a,b,c),
$\overrightarrow{D{A}_{1}}$=(6,0,6),$\overrightarrow{DE}$=(6,3,0),A1(6,06),D(0,0,0),C1(0,6,6),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=6a+6c=0}\\{\overrightarrow{n}•\overrightarrow{DE}=6a+3b=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,-2,-1),
设平面C1 DF的一个法向量为$\overrightarrow{m}$=(x,y,z),
$\overrightarrow{D{C}_{1}}$=(0,6,6),$\overrightarrow{DF}$=(3,6,0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{D{C}_{1}}=6y+6z=0}\\{\overrightarrow{m}•\overrightarrow{DF}=3x+6y=0}\end{array}\right.$,取x=2,得$\overrightarrow{m}$=(2,-1,1),
设平面A1DE与平面C1DF所成锐二面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{6}•\sqrt{6}}$=$\frac{1}{2}$,
∴平面A1DE与平面C1DF所成锐二面角的余弦值为$\frac{1}{2}$.
故选:B.
点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$ | B. | $f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | C. | $g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | D. | $g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com