精英家教网 > 高中数学 > 题目详情

设函数数学公式
①当a=1时,求函数f(x)的极值;
②若f(x)在数学公式上是递增函数,求实数a的取值范围;
③当0<a<2时,数学公式,求f(x)在该区间上的最小值.

解:①因为
所以f'(x)=x2-ax-(a+1)…(1分)
因为a=1,所以
所以f'(x)=x2-x-2…(2分)
令f'(x)=0得,x1=-1,x2=2…(3分)
列表如下:
x(-∞,-1)-1(-1,2)2(2,+∞)
y'+0-0+
y极大值极小值
当x=-1时取得极大值,为
当x=2时取得极小值,为…(5分)
②因为f(x)在上是递增函数,
所以f'(x)≥0在上恒成立,…(6分)
即x2-ax-(a+1)≥0在上恒成立.a(x+1)≤x2-1
解得…(8分)
③令f'(x)=0得,x1=-1,x2=a+1
列表如下:
x[1,a+1)a+1(a+1,4]
y'-0+
y极小值
由上表知当x=1或4时f(x)有可能取最大值,…(9分)
解得a=-4不符合题意舍.…(10分)
解得a=1…(11分)
因为a=1,
所以f'(x)=x2-x-2
令f'(x)=0得,x1=-1,x2=2…(12分)
列表如下:
x[1,2)2(2,4]
y'-0+
y极小值
当x=2时取得最小值,为…(14分)
分析:①因为,所以f'(x)=x2-ax-(a+1)…(1分)因为a=1,所以f'(x)=x2-x-2.令f'(x)=0得,x1=-1,x2=2列表讨论,能求出函数的极值.
②因为f(x)在上是递增函数,所以x2-ax-(a+1)≥0在上恒成立.由此能求出实数a的取值范围.
③令f'(x)=0得,x1=-1,x2=a+1,列表讨论,能求出f(x)在区间[1,4]上的最小值.
点评:本题考查函数的极值,实数的取值范围和函数的最小值的求法,解题时要认真审题,仔细解答,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•保定一模)设函数f(x)=
1
3
x3+
a-1
2
x2-ax+a
,其中a>0.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=0在(0,2)内恰有两个实数根,求a的取值范围;
(3)当a=1时,设函数f(x)在[t,t+2](t∈(-3,-2))上的最大值为H(t),最小值为h(t),记g(t)=H(t)-h(t),求函数g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3.
(1)当a=1时,求函数f(x)的单调区间;
(2)当a=2时,设函数h(x)=(p-2)x-
p+2ex
-3
,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
12
ax2+2ax-3lnx (a∈R)

(Ⅰ)若f(x)在x=1处有极值,求a;
(Ⅱ)若f(x)在[2,3]上为增函数,求a的取值范围.
(Ⅲ)当a=-1时,函数f(x)图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区二模)已知a>0,函数f(x)=x3-3a2x-2a,x∈[0,1].
(1)当a=1时,求f(x)在点(2,f(2))处的切线方程;
(2)求函数f(x)的单调区间;
(3)设函数g(x)=
4x2-72-x
是否存在实数a≥1,使得对于任意x1∈[0,1]总存在x0∈[0,1]满足f(x1)=g(x0)?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设函数f(x)=x3-x2-ax(a∈R).
(I)当a=1时,求函数f(x)的极值;
(II)若函数f(x)的图象上存在与x轴平行的切线,求a的取值范围.

查看答案和解析>>

同步练习册答案