【题目】在如图所示的五面体中, , , ,四边形是正方形,二面角的大小为.
(1)在线段上找出一点,使得平面,并说明理由;
(2)求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a∈R).
(Ⅰ)若a=1,求曲线f(x)在点(e,f(e))处的切线方程;
(Ⅱ)求f(x)的极值;
(Ⅲ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列函数:①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中满足条件f()>(0<x1<x2)的函数的个数是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018四川绵阳南山中学高三二诊热身考试】以下四个命题中:
①某地市高三理科学生有15000名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式抽取100分试卷进行分析,则应从120分以上(包括120分)的试卷中抽取15分;
②已知命题,,则,;
③在上随机取一个数,能使函数在上有零点的概率为;
④在某次飞行航程中遭遇恶劣气候,用分层抽样的20名男乘客中有5名晕机,12名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用独立性检验,有97%以上的把握认为与性别有关.
0.15 | 0.1 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
其中真命题的序号为( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:
愿意被外派 | 不愿意被外派 | 合计 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合计 | 60 | 40 | 100 |
(1)根据凋查的数据,是否有的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:关于x的二次方程x2+(a+1)x+a-2=0的一个根大于零,另一根小于零;命题q:不等式2x2+x>2+ax对x∈(-∞,-1)恒成立.如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 若椭圆上一点满足,且椭圆过点,过点的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)若点是点在轴上的垂足,延长交椭圆于,求证: 三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体的底面是边长为2的正方形, 底面, ,且.
(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线与平面所成角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}中,a2=5,S5=40.等比数列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通项公式
(2)令cn=anbn,求数列{cn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com