精英家教网 > 高中数学 > 题目详情
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。
(1)|CD|==
(2) =; (3) CH不与面ABD垂直。

试题分析:依题意,ABD=90o,建立如图的坐标系使得△ABC在yoz平面上,△ABD与△ABC成30o的二面角, DBY=30o,又AB=BD=2,  A(0,0,2),B(0,0,0),
C(0,,1),D(1,,0),
    (1)|CD|==……… 5分
(2)x轴与面ABC垂直,故(1,0,0)是面ABC的一个法向量。
设CD与面ABC成的角为,而= (1,0,-1),
sin==
[0,],=; 8分
(3) 设=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
,则 (t,t-,-2 t+1)·(0,0,2)="0" 得t=,   10分
此时=(,-,0),
=(1,,0),·=-=-10, 不垂直,
即CH不可能同时垂直BD和BA,即CH不与面ABD垂直。 12分
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题利用空间向量,简化了证明过程,但对计算能力要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体的棱线长为1,线段上有两个动点E,F,且,则三棱锥的体积为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是两条直线,α是一个平面,则下列命题正确的是(   )
A.若a∥b,则a平行于经过b的任何平面
B.若a∥α,则a与α内任何直线平行
C.若a∥α,b∥α,则a∥b
D.若a∥b,a∥α,bα,则b∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是平面内的一条定直线,是平面外的一个定点,动直线经过点且与角,则直线与平面的交点的轨迹是
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,,且E、F分别为线段CD、AB上的点,且.将梯形沿EF折起,使得平面平面BCEF,折后BD与平面ADEF所成角正切值为

(Ⅰ)求证:平面BDE
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体中,分别是棱的中点,则与平面所成的角的大小是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知经过同一点的N个平面,任意三个平面不经过同一条直线.若这个平面将空间分成个部分,则                        .

查看答案和解析>>

同步练习册答案