精英家教网 > 高中数学 > 题目详情
8.用诱导公式求下列三角函数值(可用计算器):
(1)cos$\frac{65}{6}$π;
(2)sin(-$\frac{31}{4}$π);
(3)sin670°39′;
(4)tan(-$\frac{26π}{3}$).

分析 直接利用诱导公式化简求解即可.

解答 解:(1)cos$\frac{65}{6}$π=cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$;
(2)sin(-$\frac{31}{4}$π)=sin(-8π+$\frac{π}{4}$)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;
(3)sin670°39′=sin(-49°21′)=-sin49°21′=-0.8049;
(4)tan(-$\frac{26π}{3}$)=-tan$\frac{26π}{3}$=-tan$\frac{2π}{3}$=$\sqrt{3}$.

点评 本题考查诱导公式的应用,三角函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求函数y=0.2-x2-3x+4的定义域、值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出命题”已知$\overrightarrow{a}$=(1.2),存在$\overrightarrow{b}$=(x,1)使$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行”的否定,判断其真假并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cos($\frac{π}{2}$+α)=$\frac{1}{3}$.求值:$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{3π}{2}+α)}{sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已a,b,c分别为△ABC三个内角A,B,C的对边,且3cosC+$\sqrt{3}$sinC=$\frac{3a}{b}$,AC边上的垂直平分线交边AB于点D.
(I)求∠B的大小:
(Ⅱ)若a=2,且△DBC的面积为$\frac{\sqrt{3}}{2}$,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简:
(1)$\frac{\sqrt{1-2sin11{0}^{°}cos29{0}^{°}}}{cos38{0}^{°}-\sqrt{1-co{s}^{2}16{0}^{°}}}$.
(2)$\frac{tan(3π-α)sin(-2π-α)sin(\frac{5π}{2}+α)}{cos(α-π)tan(3π+α)cos(α-\frac{3π}{2})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个圆锥的侧面展开图是圆心角为$\frac{4π}{3}$,半径为6cm的扇形,则此圆锥的体积为$\frac{16\sqrt{5}π}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b为实数,若复数$\frac{1+2i}{a+bi}=1+i$,则a-b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=|loga|x-1||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则 $\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=2.

查看答案和解析>>

同步练习册答案