【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线的参数方程为(为参数, ).
(Ⅰ)把曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.
科目:高中数学 来源: 题型:
【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距市且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.
(1)快艇至少以多大的速度行驶才能把稿件送到司机手中?
(2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M为AC的中点,N为PD上一点.
(1)若MN∥平面ABP,求证:N为PD的中点;
(2)若平面ABP⊥平面APC,求证:PC⊥平面ABP.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;
的浓度;
(ii)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数)
参考公式:回归直线的方程是,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设两个非零向量 和 不共线.
(1)如果 = + , =2 +8 , =3 ﹣3 ,求证:A、B、D三点共线;
(2)若| |=2,| |=3, 与 的夹角为60°,是否存在实数m,使得m + 与 ﹣ 垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.
(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?
(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com