精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线的参数方程为为参数, ).

(Ⅰ)把曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

【答案】(1)详见解析;(2

【解析】试题分析:(1)对曲线的极坐标方程两边乘以,可化得其直角坐标方程为,这是顶点在原点,焦点为的抛物线;(2)根据直线参数方程的定义可知,直线过点,依题意直线又过点,由此求得直线方程为,倾斜角为,故直线的参数方程为,代入抛物线的直角坐标方程,写出韦达定理,利用求得弦长为.

试题解析:(1)曲线的直角坐标方程为,故曲线是顶点为,焦点为的抛物线.

(2)直线的参数方程为为参数, ),故经过点,若直线经过点,则.

∴直线的参数方程为为参数)

代入,得

对应的参数分别为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,扇形的半径为r cm,周长为20cm,问扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求出扇形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为矩形,ABBPMAC的中点,NPD上一点.

(1)若MN∥平面ABP,求证:NPD的中点;

(2)若平面ABP⊥平面APC,求证:PC⊥平面ABP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期七

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;

的浓度;

(ii)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数)

参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)如果 = + =2 +8 =3 ﹣3 ,求证:A、B、D三点共线;
(2)若| |=2,| |=3, 的夹角为60°,是否存在实数m,使得m + 垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.
(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?
(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

同步练习册答案