精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.

【答案】
(1)解:由三角形的面积公式可得SABC= acsinB=

∴3csinBsinA=2a,

由正弦定理可得3sinCsinBsinA=2sinA,

∵sinA≠0,

∴sinBsinC=


(2)解:∵6cosBcosC=1,

∴cosBcosC=

∴cosBcosC﹣sinBsinC= =﹣

∴cos(B+C)=﹣

∴cosA=

∵0<A<π,

∴A=

= = =2R= =2

∴sinBsinC= = = =

∴bc=8,

∵a2=b2+c2﹣2bccosA,

∴b2+c2﹣bc=9,

∴(b+c)2=9+3cb=9+24=33,

∴b+c=

∴周长a+b+c=3+


【解析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA= ,即可求出A= ,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,有下列4个命题:

,则的图象关于直线对称;

的图象关于直线对称;

为偶函数,且,则的图象关于直线对称;

为奇函数,且,则的图象关于直线对称.

其中正确的命题为 .(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体中,是边长为2的等边三角形,的中点,

1若平面平面,证明:

2求证:

3,求点到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩 (同一组中的数据用该组区间的中点值作代表);

(3)设根据茎叶图计算出的全班的平均成绩为,并假设,且各自取得每一个可能值的机会相等,在(2)的条件下,求概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时, x2+lnx< x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别依次有点A1、A2 , …,An , …,和点B1 , B2 , …,Bn…,其中 .且 (n=2,3,4…).

(1)用n表示|OAn|及点An的坐标;
(2)用n表示|BnBn+1|及点Bn的坐标;
(3)写出四边形AnAn+1Bn+1Bn的面积关于n的表达式S(n),并求S(n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n项和,求证 <2.

查看答案和解析>>

同步练习册答案