精英家教网 > 高中数学 > 题目详情
已知△ABC的边AB所在直线的方程为x-3y-6=0,M(2,0)满足,点T(-1,1)在AC所在直线上且.   
(1)求△ABC外接圆的方程;
(2)一动圆过点N(-2,0),且与△ABC的外接圆外切,求此动圆圆心的轨迹方程Γ;
(3)过点A斜率为k的直线与曲线Γ交于相异的P,Q两点,满足,求k的取值范围.
【答案】分析:(1)由,知AT⊥AB,从而直线AC的斜率为-3.所以AC边所在直线的方程为3x+y+2=0.由得点A的坐标为(0,-2),由此能求出△ABC外接圆的方程.
(2)设动圆圆心为P,因为动圆过点N,且与△ABC外接圆M外切,所以,即.故点P的轨迹是以M,N为焦点,实轴长为,半焦距c=2的双曲线的左支.由此能求出动圆圆心的轨迹方程.
(3)PQ直线方程为:y=kx-2,设P(x1,y1),Q(x2,y2),由得(1-k2)x2+4kx-6=0(x<0)
,由此能够得到k的取值范围.
解答:解:(1)∵∴AT⊥AB,从而直线AC的斜率为-3.
所以AC边所在直线的方程为y-1=-3(x+1).即3x+y+2=0.
得点A的坐标为(0,-2),

所以△ABC外接圆的方程为:(x-2)2+y2=8.
(2)设动圆圆心为P,因为动圆过点N,且与△ABC外接圆M外切,
所以,即
故点P的轨迹是以M,N为焦点,实轴长为,半焦距c=2的双曲线的左支.
从而动圆圆心的轨迹方程Γ为
(3)PQ直线方程为:y=kx-2,设P(x1,y1),Q(x2,y2
得(1-k2)x2+4kx-6=0(x<0)

解得:
故k的取值范围为
点评:本题考查直线和圆锥曲线的位置关系的综合运用,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知△ABC的边AB所在直线的方程为x-3y-6=0,M(2,0)满足
BM
=
MC
,点T(-1,1)在AC所在直线上且
AT
AB
=0
.   
(1)求△ABC外接圆的方程;
(2)一动圆过点N(-2,0),且与△ABC的外接圆外切,求此动圆圆心的轨迹方程Γ;
(3)过点A斜率为k的直线与曲线Γ交于相异的P,Q两点,满足
OP
OQ
>6
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足
BM
=
MC
,点T(-1,1)在AC边所在直线上且满足
AT
=
AB

(I)求AC边所在直线的方程;
(II)求△ABC外接圆的方程;
(III)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.
请注意下面两题用到求和符号:
f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n为正整数且k≤n.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知△ABC的边AB边所在直线的方程为x-3y-6=0点B关于点M(2,0)的对称点为C,点T(-1,1)在AC边所在直线上且满足
AT
AB
=0

(I)求AC边所在直线的方程;
(II)求△ABC的外接圆的方程;
(III)若点N的坐标为(-n,0),其中n为正整数.试讨论在△ABC的外接圆上是否存在点P,使得|PN|=|PT|成立?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足
BM
=
MC
,点T(-1,1)在AC边所在直线上且满足
AT
AB
=0

(1)求AC边所在直线的方程;
(2)求△ABC外接圆的方程;
(3)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省徐州市运河中学高三摸底迎考练习(二)(解析版) 题型:解答题

已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足,点T(-1,1)在AC边所在直线上且满足
(1)求AC边所在直线的方程;
(2)求△ABC外接圆的方程;
(3)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.

查看答案和解析>>

同步练习册答案