精英家教网 > 高中数学 > 题目详情

【题目】在长方体中,分别是棱的中点,是底面内一动点,若直线与平面平行,则三角形面积最小值为( )

A.B.1C.D.

【答案】C

【解析】

由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在的线段,计算即可.

分别取的中点H,Q,R,补全截面EFG为截面EFGHQR如图所示,

设BR⊥AC,∵直线D1P与平面EFG不存在公共点,∴D1P∥平面EFGHQR,易知平面ACD1∥平面EFGHQR,∴P∈AC,

且当P与R重合时,BP=BR最短,此时△PBB1的面积最小,

由等面积法:BR×AC=BA×BC,得

,又BB1⊥平面ABCD,∴BB1⊥BP,△PBB1为直角三角形,

∴△PBB1的面积为:.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况随机抽取了100人,统计结果整理如下

20以下

[20,30)

[30,40)

[40,50)

[50,60)

[60,70]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取1名顾客试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中随机抽取3人进一步了解情况表示这3人中年龄在的人数,求随机变量的分布列及数学期望

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形.

(1)证明:当点上运动时,始终有平面平面

(2)求锐二而角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点CO上,且AOC120°PA⊥平面ABCAB=4,PA=2DPC的中点,点MO上的动点(不与AC重合).

(1)证明:ADPB

(2)当三棱锥DACM体积最大时,求面MAD与面MCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:

喜欢《最强大脑》

不喜欢《最强大脑》

合计

男生

15

女生

15

合计

已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4

(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;

(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.

参考公式:

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且的中点

(1)求直三棱柱的全面积;

(2)求异面直线所成角的大小(结果用反三角函数表示);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的项数均为,则将两个数列的偏差距离定义为,其中.

1)求数列1278和数列2356的偏差距离;

2)设为满足递推关系的所有数列的集合,中的两个元素,且项数均为,若的偏差距离小于2020,求最大值;

3)记是所有7项数列的集合,,且中任何两个元素的偏差距离大于或等于3,证明:中的元素个数小于或等于16.

查看答案和解析>>

同步练习册答案