精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,曲线C1的参数方程为数学公式(a>b>0,?为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,数学公式)对应的参数φ=数学公式;θ=数学公式;与曲线C2交于点D(数学公式数学公式
(1)求曲线C1,C2的方程;
(2)A(ρ?,θ),Β(ρ2,θ+数学公式)是曲线C1上的两点,求数学公式+数学公式的值.

解:(1)将M(2,)及对应的参数φ=;θ=
代入得:

得:
∴曲线C1的方程为:(∅为参数)或
设圆C2的半径R,则圆C2的方程为:ρ=2Rcosθ(或(x-R)2+y2=R2),将点D(
代入得:=2R•
∴R=1
∴圆C2的方程为:ρ=2cosθ(或(x-1)2+y2=1)…(5分)
(2)曲线C1的极坐标方程为:+=1
将A(ρ?,θ),Β(ρ?,θ+)代入得:+=1,+=1
+=(+)+(+)=…(10分)
分析:(1)将M(2,)对应的参数φ=,代入曲线C1的参数方程,求出a、b的值,可得曲线C1的方程.把点D的极坐标化为直角坐标代入圆C2的方程为(x-R)2+y2=R2 ,求得R=1,即可得到曲线C2的方程.
(2)把A、B两点的极坐标化为直角坐标,代入曲线C1的方程可得:+=1,+=1从而求出+的值.
点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案