精英家教网 > 高中数学 > 题目详情
下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分条件
C、命题“若x=y,则sinx≠siny”的逆否命题为假命题
D、命题“若x2+y2≠0,则x、y不全为零”的否命题为真命题
考点:命题的真假判断与应用
专题:简易逻辑
分析:A,C,D三个选项一方面考查四种命题的写法,另一方面考查其真假的判断.否命题是否条件当条件,否结论当结论;逆否命题是否条件当结论,否结论当条件;
B项考查了充分必要性的判断方法,一是已知是否推出结论成立,同时从结论出发,看能否推出条件成立,然后给出判断.
解答: 解:对于A,应该同时将条件x2=1否定为x2≠1当条件,所以A错;
对于B,将x=-1代入x2-5x-6=0成立,故前者是后者的充分条件,故B错;
对于C,举例:显然原命题为假命题,因此其逆否命题也是假命题,故C正确;
对于D,原命题的否命题为:“若x2+y2=0,则x、y全为零”,取x=i,y=1代入原式,显然成立,所以D错.
故选C.
点评:本题属于基础题,主要是考查了四种命题真假的关系及判断方法,再就是充分必要性的判断方法,难度不大,注意对概念的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a3+a5+…+a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,-2)若向量
AB
a
=(2,3)同向,|
AB
|=
13
,则点B的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2
x-x 
1
3
,那么在下列区间中含有函数f(x)零点的是(  )
A、(
2
3
,1)
B、(
1
2
2
3
C、(
1
3
1
2
D、(0,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(X)的定义域为(0,+∞)且满足2f(x)+f(
1
x
)=2lnx+
a(2x+1)
x+1

(1)若a=-8,判断f(x)在定义域上的单调性;
(2)若f(x)在定义域上有两个极值点x1,x2(x1≠x2),求证:f(x1)+f(x2)≥
f(x)+2
x
-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:
年份(x)12345
人数(y)3581113
求y关于x的回归方程
y
=
b
x+
a
所表示的直线必经的点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α满足α=
2kπ
3
+
π
6
(k∈Z),则α的终边一定在(  )
A、第一象限或第二象限或第三象限
B、第一象限或第二象限或第四象限
C、第一象限或第二象限或x轴非负半轴上
D、第一象限或第二象限或y轴非正半轴上

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C的对边分别是a,b,c,其中a=
5
,b=
3
,sinB=
2
2
,则角A的取值范围一定属于(  )
A、(45°,90°)
B、(45°,90°)∪(90°,135°)
C、(0°,45°)∪(135°,180°)
D、(90°,135°)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:如果函数y=f(x)在定义域内给定义域区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)-f(a)
b-a
,则称函数y=f(x)是[a,b]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=cosx-1是[-2π,2π]上的“平均值函数”
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0
a+b
2

③若函数f(x)=x-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是m∈(0,2)
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均函数”,x0是它的一个均值点,则lnx0
1
ab

其中的真命题有
 
.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案